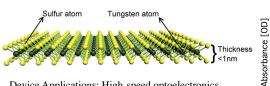
Observation of Trions in Monolayer WS₂ via Time-Resolved Terahertz Spectroscopy

Jon K. Gustafson and L. Michael Hayden

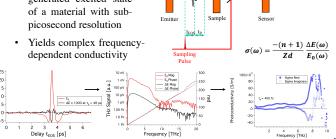

Department of Physics, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250

Introduction

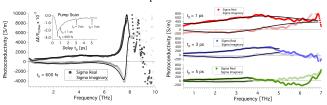
Carrier Dynamics: How charges behave in a material under the influence of an electric field


Monolayer: A single layer of molecules

Device Applications: High-speed optoelectronics Field-effect transistors Photovoltaics


Properties of WS₂

- · Reduced dielectric screening results in the existence of tightly bound excitons at room temperature
- Strong Coulombic interactions support charged excitons (trions)


Time-Resolved Terahertz Spectroscopy (TRTS)

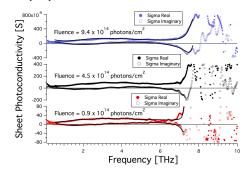
· TRTS probes the photogenerated excited state of a material with subpicosecond resolution

Time Evolution of Photoconductivity

Conductivity was probed at pump delays $t_p = 0.6, 1, 3,$ and 5 ps at 20 Kelvin with $\sim 6 \times 10^{14}$ photons/cm² of 584 nm

- Trions have been predicted^{2,3} and observed^{1,4,5,6,7} to have binding energies of about 25-40 meV (~ 6.0-9.7 THz) in WS₂
- The resonant feature in the conductivity at 7.75 THz (32meV) indicates the formation of trions in our sample
- We model the THz photoconductivity as a sum of three oscillators

$$\sigma(\omega) = \sum_{m=1}^{3} \frac{i C_m \omega}{\omega^2 - \omega_{0m}^2 + i \omega \gamma_m}$$


 $m = 1 \rightarrow Drude Response$ $m = 2 \rightarrow Plasma Response$ $m = 3 \rightarrow Trion Response$

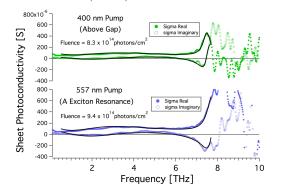
Pump Delay	C ₁	γ1	ω_{01}	C ₂	γ ₂	ω_{02}	C ₃	γ ₃	ω_{03}
$t_{p} = 600 \text{ fs}$	1.5e16	25.0	0	4.4e16	41	4.7	2.6e16	2.93	7.75
$t_p = 1 ps$	7.8e15	27.0	0	1.9e16	35	4.5	0	0	0
$t_p = 3 \text{ ps}$	3.9e15	44.9	0	7.5e15	26	4.3	0	0	0
$t_p = 5 ps$	2.1e15	41.1	0	3.3e15	27	4.1	0	0	0

- \triangleright There is no trion component for pump delays of $t_n = 1, 3$, and 5 ps
- \triangleright As t_p increases, ω_{02} shifts to lower frequencies

Fluence-Dependent Photoconductivity

Conductivity was probed on resonance (A exciton) at 20 Kelvin (557 nm pump) at various fluences 400 fs after excitation

Fluence	C ₁	γ1	ω_{01}	C_2	γ ₂	ω_{02}	C_3	γ3	ω_{03}
9.4e14	6.0e8	3.8	0	4.3e9	32	3.2	2.3e9	3.55	7.75
4.5e14	2.6e8	2.6	0	3.7e9	42	3.3	1.0e9	2.31	7.56
0.9e14	6.5e7	1.0	0	1.3e9	53	3.2	9.9e7	1.02	7.29


- > Trion component observed at all fluences
- \triangleright As t_p increases: \circ No trend in ω_{02}
 - \circ ω_{03} shifts to lower frequencies

- As fluence increases, the change in the THz field saturates
- Free charge carriers are no longer being generated

Above and Below Resonant Excitation

Conductivity was probed above the bandgap (400 nm pump) and on resonance (557 nm) at 20 Kelvin

Conclusions

- · We attribute the Drude response to the promotion of trapped defect electrons to the conduction band
- We assign the source of the ω_{02} resonance to a plasmonic⁸ response associated with particles with sizes similar to the THz wavelengths
- We assign the source of the ω_{03} resonance to the dissociation of trions into free electrons and excitons

References

- 1. Zhu et al., Scientific Reports 5 9218 (2015)
- 2. Berkelbach et al., Phys Rev B 88 045318 (2013)
- 3. Kezerashvili et al., Few Body Syst 58 18 (2017)
- Mitioglu et al., Phys Rev B 88 245403 (2013) 6. Peimyoo et al., ACS Nano 8 11 (2014)
- 7. Plechinger et al., Phys Status Solidi 9 8 (2015)
- Chernikov et al., Phys Rev Lett 113 076802 (2014) 8. H.-K. Nienhuys and V. Sundstrom, Appl. Phys. Lett. 87 012101 (2005)